Ma notation: Difference between revisions
No edit summary |
|||
(44 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
2 = 2^1 | 2 = 2^1 | ||
2 is the smallest value for the base in the operations of the hyperoperation sequence that | 2 is the smallest value for the base in the operations of the hyperoperation sequence that result for b>2 and n>2 in increasing values for increasing n. | ||
====base 4==== | ====base 4==== | ||
Line 17: | Line 17: | ||
====base 16==== | ====base 16==== | ||
16 = 2^^2 (tetration) | 16 = 2^^2 (tetration) | ||
===List=== | |||
{| class="wikitable sortable" | |||
! colspan=2 | | |||
! colspan=5 | n | |||
|- | |||
! a | |||
! b | |||
! 0 | |||
! 1 | |||
! 2 | |||
! 3 | |||
! 4 | |||
|- | |||
! 1 | |||
! 0 | |||
| 1 | |||
| 1 | |||
| 0 | |||
| 1 | |||
| 1 | |||
|- | |||
! 1 | |||
! 1 | |||
| 2 | |||
| 2 | |||
| 1 | |||
| 1 | |||
| 1 | |||
|- | |||
! 1 | |||
! 2 | |||
| 3 | |||
| 3 | |||
| 2 | |||
| 1 | |||
| 1 | |||
|- | |||
! 1 | |||
! 3 | |||
| 4 | |||
| 4 | |||
| 3 | |||
| 1 | |||
| 1 | |||
|- | |||
! 2 | |||
! 0 | |||
| 1 | |||
| 2 | |||
| 0 | |||
| 1 | |||
| 2 | |||
|- | |||
! 2 | |||
! 1 | |||
| 2 | |||
| 3 | |||
| 2 | |||
| 2 | |||
| 2 | |||
|- | |||
! 2 | |||
! 2 | |||
| 3 | |||
| 4 | |||
| 4 | |||
| 4 | |||
| 16 | |||
|- | |||
! 2 | |||
! 3 | |||
| 4 | |||
| 5 | |||
| 6 | |||
| 8 | |||
| 134217728 | |||
|} | |||
===Cycles that fit with the above bases=== | ===Cycles that fit with the above bases=== | ||
Line 46: | Line 124: | ||
===List=== | ===List=== | ||
==== | ====Approximant/Vowels==== | ||
*A 0 a {{wpen|Open_front_unrounded_vowel}} | *A 0 a {{wpen|Open_front_unrounded_vowel}} | ||
*Ä 1 ɛ {{wpen|Open-mid_front_unrounded_vowel}} | *Ä 1 ɛ {{wpen|Open-mid_front_unrounded_vowel}} | ||
Line 95: | Line 134: | ||
*Ü 7 u {{wpen|Close_back_rounded_vowel}} | *Ü 7 u {{wpen|Close_back_rounded_vowel}} | ||
** ə {{wpen|Mid-central_vowel}} | |||
====Consonants==== | |||
{| class="wikitable sortable" | |||
! Base | |||
! N. | |||
! IPA | |||
! [[International Latin Alphabet|ILA]] | |||
! Manner s/o | |||
! Manner | |||
! Place | |||
! Voice | |||
! Link | |||
|- | |||
| base 2 || 0 || m || M || sonorant || 0 NASAL || 0/0 LABIAL/bilabial || 1 || {{wpen|Bilabial_nasal}} | |||
|- | |||
| base 2 || 1 || n || N || sonorant || 0 NASAL || 1/3 CORONAL/alveolar || 1 || {{wpen|Alveolar_nasal}} | |||
|- | |||
| extra for base 4 || 2 || p || P || obstruent || 1 PLOSIVE/stop || 0/0 LABIAL/bilabial || 0 || {{wpen|Voiceless_bilabial_plosive}} | |||
|- | |||
| extra for base 4 || 3 || b || B || obstruent || 1 PLOSIVE/stop || 0/0 LABIAL/bilabial || 1 || {{wpen|Voiced_bilabial_plosive}} | |||
|- | |||
| extra for base 8 || 4 || t || T || obstruent || 1 PLOSIVE/stop || 1/3 CORONAL/alveolar || 0 || {{wpen|Voiceless_alveolar_plosive}} | |||
|- | |||
| extra for base 8 || 5 || d || D || obstruent || 1 PLOSIVE/stop || 1/3 CORONAL/alveolar || 1 || {{wpen|Voiced_alveolar_plosive}} | |||
|- | |||
| extra for base 8 || 6 || k || K || obstruent || 1 PLOSIVE/stop || 2/8 DORSAL/velar || 0 || {{wpen|Voiceless_velar_plosive}} | |||
|- | |||
| extra for base 8 || 7 || g || G || obstruent || 1 PLOSIVE/stop || 2/8 DORSAL/velar || 1 || {{wpen|Voiced_velar_plosive}} | |||
|- | |||
| extra for base 12 || 8 || f || F || obstruent || 3 FRICATIVE/Non-sibilant fricative || 0/1 LABIAL/labio-dental || 0 || {{wpen|Voiceless_labiodental_fricative}} | |||
|- | |||
| extra for base 12 || 9 || v || V || obstruent || 3 FRICATIVE/Non-sibilant fricative || 0/1 LABIAL/labio-dental || 1 || {{wpen|Voiced_labiodental_fricative}} | |||
|- | |||
| extra for base 12 || 10 || s || S || obstruent || 2 FRICATIVE/Sibilant fricative || 1/3 CORONAL/alveolar || 0 || {{wpen|Voiceless_alveolar_sibilant}} | |||
|- | |||
| extra for base 12 || 11 || z || Z || obstruent || 2 FRICATIVE/Sibilant fricative || 1/3 CORONAL/alveolar || 1 || {{wpen|Voiced_alveolar_sibilant}} | |||
|- | |||
| extra for base 16 || 12 || ʃ || C || obstruent || 2 FRICATIVE/Sibilant fricative || 1/4 CORONAL/postalveolar || 0 || {{wpen|Voiceless_palato-alveolar_sibilant}} | |||
|- | |||
| extra for base 16 || 13 || ʒ || Y || obstruent || 2 FRICATIVE/Sibilant fricative || 1/4 CORONAL/postalveolar || 1 || {{wpen|Voiced_palato-alveolar_sibilant}} | |||
|- | |||
| extra for base 16 || 14 || ç || Q || obstruent || 3 FRICATIVE/Non-sibilant fricative || 2/7 DORSAL/palatal || 0 || {{wpen|Voiceless_palatal_fricative}} | |||
|- | |||
| extra for base 16 || 15 || j || J || sonorant || 4 APPROX (ʝ FRICATIVE) || 2/7 DORSAL/palatal || 1 ||{{wpen|Voiced_palatal_approximant}} | |||
|- | |||
| extra || 16 || x || X || obstruent || 3 FRICATIVE/Non-sibilant fricative || 2/8 DORSAL/velar || 0 ||{{wpen|Voiceless_velar_fricative}} | |||
|- | |||
| extra || 17 || h || H || ? || 3?4 (FRICATIVE) || 4/12 LARYNGEAL/glottal || 0 || {{wpen|Voiceless_glottal_fricative}} | |||
|- | |||
| extra || 18 || r || R || ? || 6 TRILL || 1/3 CORONAL/alveolar || 1 || {{wpen|Voiced_alveolar_trill}} | |||
|- | |||
| extra || 19 || l || L || sonorant || 8 LATERAL-APPROX || 1/3 CORONAL/alveolar || 1 || {{wpen|Voiced_alveolar_lateral_approximant}} | |||
|- | |||
| extra || 20 || w || W || sonorant || Approximant/(Co-articulated) || 2/8 DORSAL/velar || 1 || {{wpen|Voiced_labio-velar_approximant}} | |||
|} | |||
==Numeral system== | ==Numeral system== | ||
Line 151: | Line 244: | ||
==Place== | ==Place== | ||
=== Coordinates === | === Coordinates === | ||
==== Latitude ==== | |||
As degrees: | |||
{| class="wikitable sortable" | |||
! Ma | |||
! ISO 6709 | |||
! Comment | |||
|- | |||
| 0.4 || 90° || North Pole | |||
|- | |||
| 0.3 || 67.5° || | |||
|- | |||
| 0.2 || 45° || | |||
|- | |||
| 0.1 || 22.5° || | |||
|- | |||
| 0 || 0 || equator | |||
|- | |||
| -0.1 || -22.5° || | |||
|- | |||
| -0.2 || -45° || | |||
|- | |||
| -0.3 || -22.5° || | |||
|- | |||
| -0.4 || -90° || South Pole | |||
|} | |||
==== Longitude ==== | ==== Longitude ==== | ||
Line 160: | Line 277: | ||
* 0x0.08 = 11.25° | * 0x0.08 = 11.25° | ||
* 0x0.2 = 45° | * 0x0.2 = 45° | ||
http://anna.info/x/Peters_projection_-_Umnak_meridian_-_hextime.svg | |||
Positions: | Positions: | ||
{| | {| class="wikitable sortable" | ||
!Ma | !Ma | ||
!ISO 6709 in ° | !ISO 6709 in ° | ||
Line 168: | Line 287: | ||
!Comment | !Comment | ||
|- | |- | ||
| 0 | | .0 | ||
| -168.75 | | -168.75 | ||
| -168°45' | | -168°45' | ||
| Umnak | | Umnak | ||
|- | |- | ||
| | | .1 | ||
| 168.75 | |||
| | |||
| | |||
|- | |||
| .2 | |||
| 146.25 | |||
| | |||
| Wilsons Promontory N.P., Tasmania | |||
|- | |||
| .3 | |||
| 123.75 | |||
| | |||
| | |||
|- | |||
| .4 | |||
| 101.25 | |||
| | |||
| | |||
|- | |||
| .5 | |||
| 78.75 | | 78.75 | ||
| | | | ||
| Issyk Kul (Kyrgyzstan), Meerut, East of New Delhi (India), West of Sri Lanka | | Issyk Kul (Kyrgyzstan), Meerut, East of New Delhi (India), West of Sri Lanka | ||
|- | |- | ||
| | | .6 | ||
| 56.25 | |||
| | |||
| | |||
|- | |||
| .7 | |||
| 33.75 | |||
| | |||
| Krym, Lake Victoria | |||
|- | |||
| .8 | |||
| 11.25 | | 11.25 | ||
| 11°15' | | 11°15' | ||
| Florence | | Florence | ||
|- | |- | ||
| | | .C | ||
| -78.75 | | -78.75 | ||
| | | | ||
Line 256: | Line 405: | ||
! Hex | ! Hex | ||
! | ! | ||
! hexsec<br> base 16 | ! hexsec<br> (base 16 notation) | ||
! | ! | ||
! hexsec<br> base 10 | ! hexsec<br> (base 10 notation) | ||
! | ! | ||
! Traditional | ! Traditional | ||
Line 335: | Line 484: | ||
===Epoch=== | ===Epoch=== | ||
Avoid negative year numbers for years since - | |||
Avoid negative year numbers for years since -53248 CE. | |||
{| class="wikitable" | {| class="wikitable" | ||
! ISO (CE) | ! ISO (CE) | ||
! | ! Ma (base 10) | ||
! | ! Ma (base 16) | ||
! Note | ! Note | ||
|- | |- | ||
| - | | -53248 | ||
| 0 | | 0 | ||
| 0 | | 0 | ||
| | | | ||
|- | |- | ||
| - | | -49152 | ||
| 4096 | | 4096 | ||
| 1000 | | 1000 | ||
| | | Start of the 1xxx-years. First four digit year in hex notation. | ||
|- | |- | ||
| - | | -13926 | ||
| 39322 | | 39322 | ||
| 999A | | 999A | ||
| starting with that year all 4-character hex notations until FFFF will include a letter and distinguish the notation from other systems of year notation. | | starting with that year all 4-character hex notations until FFFF will include a letter and distinguish the notation from other systems of year notation. | ||
|- | |- | ||
| - | | -12288 | ||
| 40960 | | 40960 | ||
| A000 | | A000 | ||
| | | Start of the Axxx-years. Starting with that year, all 4-character hex notations until FFFF will start with a letter and distinguish the notation even better from other systems of year notation. | ||
|- | |- | ||
| - | | -9558 | ||
| | | 45056 | ||
| | | AAAA | ||
| | | | ||
|- | |- | ||
| - | | -8192 | ||
| 45056 | | 45056 | ||
| B000 | | B000 | ||
| Start of the Bxxx-years. | | Start of the Bxxx-years. | ||
|- | |||
| -4096 | |||
| 49152 | |||
| C000 | |||
| Start of the Cxxx-years. | |||
|- | |- | ||
| 0 | | 0 | ||
| | | 53248 | ||
| | | D000 | ||
| | | Start of the Dxxx-years. Until 4095 CE all years start with the letter D. | ||
|- | |- | ||
| 1792 | | 1792 | ||
| | | 55040 | ||
| | | D700 | ||
| | | | ||
|- | |- | ||
| 2000 | | 2000 | ||
| | | 55248 | ||
| | | D7D0 | ||
| | | | ||
|- | |- | ||
| 2048 | | 2048 | ||
| | | 55296 | ||
| | | D800 | ||
| | | | ||
|- | |- | ||
| 4096 | | 4096 | ||
| | | 57344 | ||
| | | E000 | ||
| | | Start of the Exxx-years. | ||
|- | |- | ||
| 10000 | | 10000 | ||
| | | 63248 | ||
| | | F710 | ||
| | | ISO calendar needs 5 digits. | ||
|- | |- | ||
| | | 12287 | ||
| 65535 | | 65535 | ||
| FFFF | | FFFF | ||
| the last year that can be expressed with 4 digits in hex notation. | | the last year that can be expressed with 4 digits in hex notation. | ||
|} | |} | ||
The year starts on the day of the Northward equinox. The length of Northward equinox solar year is relatively stable in the time from 6000 BCE to 10000 CE at 47:37 to 49:20 in excess of 365 days and 5 hours. The other equinox and the solstice years are less stable. | |||
That means, the year starts on what is mostly March 20 or 21 in ISO 8601. | |||
===Frequency=== | ===Frequency=== | ||
Line 426: | Line 580: | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
! Ma | |||
! 2^(...) | ! 2^(...) | ||
! Oscillation per day | ! Oscillation per day | ||
Line 431: | Line 586: | ||
! Hz | ! Hz | ||
! ETS | ! ETS | ||
! Midi approx | |||
|- | |- | ||
| M0 | |||
| 0x0 | | 0x0 | ||
| 2^0 = 0x1 | | 2^0 = 0x1 | ||
Line 437: | Line 594: | ||
| 1/(60*60*24) = 0.00001157407 | | 1/(60*60*24) = 0.00001157407 | ||
| G-21 | | G-21 | ||
| | |||
|- | |- | ||
| M1 | |||
| 0x1 | | 0x1 | ||
| 2^1 = 0x2 | | 2^1 = 0x2 | ||
Line 443: | Line 602: | ||
| 2^(-15)/(60*60*24) = | | 2^(-15)/(60*60*24) = | ||
| G-20 | | G-20 | ||
| | |||
|- | |- | ||
| M16 | |||
| 0x10 | | 0x10 | ||
| 2^16 = 0x 1 0000 | | 2^16 = 0x 1 0000 | ||
Line 449: | Line 610: | ||
| (2^16)/(60*60*24) = 0.75851851851 | | (2^16)/(60*60*24) = 0.75851851851 | ||
| G-5 | | G-5 | ||
| | |||
|- | |- | ||
| D19 | |||
| 0x13.6AAAA | |||
| 2^19*2^(5/12) | |||
| 2^3*2^(5/12)=10.6787188334 | |||
| (2^19)/(60*60*24)*2^(5/12) = 8.10000598916 | |||
| C-1 | |||
| 0 | |||
|- | |||
| M20 | |||
| 0x14 | | 0x14 | ||
| 2^20 = 0x 10 0000 | | 2^20 = 0x 10 0000 | ||
Line 455: | Line 626: | ||
| (2^20)/(60*60*24) = 12.1362962963 | | (2^20)/(60*60*24) = 12.1362962963 | ||
| G-1 | | G-1 | ||
| 7 | |||
|- | |- | ||
| D20 | |||
| 0x14.6AAAA | |||
| 2^20*2^(5/12) | |||
| 2^4*2^(5/12)=21.3574376667 | |||
| (2^20)/(60*60*24)*2^(5/12) = 16.2000119783 | |||
| C0 | |||
| 12 | |||
|- | |||
| M21 | |||
| 0x15 | | 0x15 | ||
| 2^21 = 0x 20 0000 | | 2^21 = 0x 20 0000 | ||
Line 461: | Line 642: | ||
| (2^21)/(60*60*24) = 24.2725925926 | | (2^21)/(60*60*24) = 24.2725925926 | ||
| G0 | | G0 | ||
| 19 | |||
|- | |- | ||
| M22 | |||
| 0x16 | | 0x16 | ||
| 2^22 = 0x 40 0000 | | 2^22 = 0x 40 0000 | ||
Line 467: | Line 650: | ||
| (2^22)/(60*60*24) = 48.5451851852 | | (2^22)/(60*60*24) = 48.5451851852 | ||
| G1 | | G1 | ||
| 31 | |||
|- | |- | ||
| M23 | |||
| 0x17 | | 0x17 | ||
| 2^23 = 0x 80 0000 | | 2^23 = 0x 80 0000 | ||
Line 473: | Line 658: | ||
| (2^23)/(60*60*24) = 97.0903703704 | | (2^23)/(60*60*24) = 97.0903703704 | ||
| G2 | | G2 | ||
| 43 | |||
|- | |- | ||
| M24 | |||
| 0x18 | | 0x18 | ||
| 2^24 = 0x 100 0000 | | 2^24 = 0x 100 0000 | ||
Line 479: | Line 666: | ||
| (2^24)/(60*60*24) = 194.180740741 | | (2^24)/(60*60*24) = 194.180740741 | ||
| G3 | | G3 | ||
| 55 | |||
|- | |- | ||
| M25 | |||
| 0x19 | | 0x19 | ||
| 2^25 = 0x 200 0000 | | 2^25 = 0x 200 0000 | ||
Line 485: | Line 674: | ||
| (2^25)/(60*60*24) = 388.361481481 | | (2^25)/(60*60*24) = 388.361481481 | ||
| G4 | | G4 | ||
| 67 | |||
|- | |- | ||
| 0x19. | | N25 | ||
| 0x19.15555 | |||
| 2^25*2^(1/12) | | 2^25*2^(1/12) | ||
| 2^9*2^(1/12)=542.445104312 | | 2^9*2^(1/12)=542.445104312 | ||
| (2^25)/(60*60*24)*2^(1/12) = 411.4546569 | | (2^25)/(60*60*24)*2^(1/12) = 411.4546569 | ||
| Gis4 | | Gis4/As4 | ||
| 68 | |||
|- | |- | ||
| 0x19. | | P25 | ||
| 0x19.2AAAA | |||
| 2^25*2^(2/12) | | 2^25*2^(2/12) | ||
| 2^9*2^(2/12)=574.700568734 | | 2^9*2^(2/12)=574.700568734 | ||
| (2^25)/(60*60*24)*2^(2/12) = 435.921023988 | | (2^25)/(60*60*24)*2^(2/12) = 435.921023988 | ||
| A4 | | A4 | ||
| 69 | |||
|- | |- | ||
| B25 | |||
| 0x19.4 | | 0x19.4 | ||
| 2^25*2^(3/12)=2^(25.25) | | 2^25*2^(3/12)=2^(25.25) | ||
| 2^9*2^(3/12)=2^(9.25)=608.874042881 | | 2^9*2^(3/12)=2^(9.25)=608.874042881 | ||
| (2^25)/(60*60*24)*2^(3/12) = 461.842236971 | | (2^25)/(60*60*24)*2^(3/12) = 461.842236971 | ||
| Ais4 | | Ais4/Bes | ||
| 70 | |||
|- | |- | ||
| 0x19. | | T25 | ||
| 2^25*2^(4/12) | | 0x19.5555 | ||
| 2^25*2^(4/12)=2^(25.3333) | |||
| 2^9*2^(4/12)=645.079577546 | | 2^9*2^(4/12)=645.079577546 | ||
| (2^25)/(60*60*24)*2^(4/12) = 489.304805487 | | (2^25)/(60*60*24)*2^(4/12) = 489.304805487 | ||
| B4 | | B4/Ces4 | ||
| 71 | |||
|- | |- | ||
| 0x19. | | D25 | ||
| 0x19.6AAAA | |||
| 2^25*2^(5/12) | | 2^25*2^(5/12) | ||
| 2^9*2^(5/12)=683.438005335 | | 2^9*2^(5/12)=683.438005335 | ||
| (2^25)/(60*60*24)*2^(5/12) = 518.400383306 | | (2^25)/(60*60*24)*2^(5/12) = 518.400383306 | ||
| | | Bis4/C5 | ||
| 72 | |||
|- | |- | ||
| K25 | |||
| 0x19.8 | | 0x19.8 | ||
| 2^25*2^(6/12)=2^(25.5) | | 2^25*2^(6/12)=2^(25.5) | ||
| 2^9*2^(6/12)=724.077343935 | | 2^9*2^(6/12)=724.077343935 | ||
| (2^25)/(60*60*24)*2^(6/12) = 549.226074214 | | (2^25)/(60*60*24)*2^(6/12) = 549.226074214 | ||
| | | Cis5/Des5 | ||
| 73 | |||
|- | |||
| G25 | |||
| | |||
| 2^25*2^(7/12) | |||
| | |||
| | |||
| D5 | |||
| 74 | |||
|- | |- | ||
| | | F25 | ||
| | |||
| 2^25*2^(8/12)=2^(25.6666) | |||
| | |||
| | |||
| Dis/Es | |||
| 75 | |||
|- | |||
| V25 | |||
| 0x19.C | |||
| 2^25*2^(9/12)=2^(25.75) | |||
| | |||
| | |||
| E5/Fes | |||
| 76 | |||
|- | |||
| S25 | |||
| | |||
| 2^25*2^(10/12) | |||
| | |||
| | |||
| Eis/F | |||
| 77 | |||
|- | |||
| Z25 | |||
| | |||
| 2^25*2^(11/12) | |||
| | |||
| | |||
| Fis/Ges | |||
| 78 | |||
|- | |||
| M26 | |||
| 0x1A | |||
| 2^26 = 0x 400 0000 | | 2^26 = 0x 400 0000 | ||
| 2^10 = 1024 = 0x400 | | 2^10 = 1024 = 0x400 | ||
| (2^26)/(60*60*24) = 776.722962963 | | (2^26)/(60*60*24) = 776.722962963 | ||
| | | G5 | ||
| 79 | |||
|- | |||
| M30 | |||
| 0x1E | |||
| 2^30 = 0x 4000 0000 | |||
| 2^14 = 16384 = 0x4000 | |||
| (2^30)/(60*60*24) = 12427.5674074 | |||
| G9 | |||
| 127 | |||
|- | |||
| M31 | |||
| 0x1F | |||
| 2^31 = 0x 8000 0000 | |||
| 2^15 = 32768 = 0x8000 | |||
| (2^31)/(60*60*24) = 24855.1348148 | |||
| G10 | |||
| | |||
|- | |||
| M32 | |||
| 0x20 | |||
| 2^32 = 0x1 0000 0000 | |||
| 2^16 = 65536 = 0x1 0000 | |||
| (2^32)/(60*60*24) = 49710.2696296 | |||
| G11 | |||
| | |||
|} | |} | ||
Latest revision as of 2017-07-09T11:17:03
Overview
Ma notation is a notation of units, sounds and alike for human beings on the planet Earth.
Why
Maths
base 2
2 = 2^1
2 is the smallest value for the base in the operations of the hyperoperation sequence that result for b>2 and n>2 in increasing values for increasing n.
base 4
4 = 2^2 = 2*2 = 2+2 (exponentiation, multiplication, addition)
base 8
8 = 2^2^2
base 16
16 = 2^^2 (tetration)
List
n | ||||||
---|---|---|---|---|---|---|
a | b | 0 | 1 | 2 | 3 | 4 |
1 | 0 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 2 | 2 | 1 | 1 | 1 |
1 | 2 | 3 | 3 | 2 | 1 | 1 |
1 | 3 | 4 | 4 | 3 | 1 | 1 |
2 | 0 | 1 | 2 | 0 | 1 | 2 |
2 | 1 | 2 | 3 | 2 | 2 | 2 |
2 | 2 | 3 | 4 | 4 | 4 | 16 |
2 | 3 | 4 | 5 | 6 | 8 | 134217728 |
Cycles that fit with the above bases
Cycle 4
Soccer World Cups, Regional Cups, Olympic Summer Games have a 4 year cycle.
Elections in some countries have a 4 year cycle.
Alphabet
Features
Sound groups:
- nasal = 2
- nasal + plosive = 8
- nasal + plosive + fricative = 16
In each of the groups nasal, plosive, fricative, the order labial, coronal, dorsal is followed.
Until
- 9,
- among 63 alphabets (http://en.wikipedia.org/wiki/Latin-derived_alphabet) the letters appear in 56
- 11,
- the Latin symbols have the value of the IPA, the symbols are pronounced similar in several languages
- 15,
- even positions are voiceless
- each voiceless is even
- uneven are voiced
List
Approximant/Vowels
- A 0 a Open_front_unrounded_vowel
- Ä 1 ɛ Open-mid_front_unrounded_vowel
- E 2 e Close-mid_front_unrounded_vowel
- I 3 i Close_front_unrounded_vowel
- O 4 ɒ Open_back_rounded_vowel
- Ö 5 ɔ Open-mid_back_rounded_vowel
- U 6 o Close-mid_back_rounded_vowel
- Ü 7 u Close_back_rounded_vowel
Consonants
Base | N. | IPA | ILA | Manner s/o | Manner | Place | Voice | Link |
---|---|---|---|---|---|---|---|---|
base 2 | 0 | m | M | sonorant | 0 NASAL | 0/0 LABIAL/bilabial | 1 | Bilabial_nasal |
base 2 | 1 | n | N | sonorant | 0 NASAL | 1/3 CORONAL/alveolar | 1 | Alveolar_nasal |
extra for base 4 | 2 | p | P | obstruent | 1 PLOSIVE/stop | 0/0 LABIAL/bilabial | 0 | Voiceless_bilabial_plosive |
extra for base 4 | 3 | b | B | obstruent | 1 PLOSIVE/stop | 0/0 LABIAL/bilabial | 1 | Voiced_bilabial_plosive |
extra for base 8 | 4 | t | T | obstruent | 1 PLOSIVE/stop | 1/3 CORONAL/alveolar | 0 | Voiceless_alveolar_plosive |
extra for base 8 | 5 | d | D | obstruent | 1 PLOSIVE/stop | 1/3 CORONAL/alveolar | 1 | Voiced_alveolar_plosive |
extra for base 8 | 6 | k | K | obstruent | 1 PLOSIVE/stop | 2/8 DORSAL/velar | 0 | Voiceless_velar_plosive |
extra for base 8 | 7 | g | G | obstruent | 1 PLOSIVE/stop | 2/8 DORSAL/velar | 1 | Voiced_velar_plosive |
extra for base 12 | 8 | f | F | obstruent | 3 FRICATIVE/Non-sibilant fricative | 0/1 LABIAL/labio-dental | 0 | Voiceless_labiodental_fricative |
extra for base 12 | 9 | v | V | obstruent | 3 FRICATIVE/Non-sibilant fricative | 0/1 LABIAL/labio-dental | 1 | Voiced_labiodental_fricative |
extra for base 12 | 10 | s | S | obstruent | 2 FRICATIVE/Sibilant fricative | 1/3 CORONAL/alveolar | 0 | Voiceless_alveolar_sibilant |
extra for base 12 | 11 | z | Z | obstruent | 2 FRICATIVE/Sibilant fricative | 1/3 CORONAL/alveolar | 1 | Voiced_alveolar_sibilant |
extra for base 16 | 12 | ʃ | C | obstruent | 2 FRICATIVE/Sibilant fricative | 1/4 CORONAL/postalveolar | 0 | Voiceless_palato-alveolar_sibilant |
extra for base 16 | 13 | ʒ | Y | obstruent | 2 FRICATIVE/Sibilant fricative | 1/4 CORONAL/postalveolar | 1 | Voiced_palato-alveolar_sibilant |
extra for base 16 | 14 | ç | Q | obstruent | 3 FRICATIVE/Non-sibilant fricative | 2/7 DORSAL/palatal | 0 | Voiceless_palatal_fricative |
extra for base 16 | 15 | j | J | sonorant | 4 APPROX (ʝ FRICATIVE) | 2/7 DORSAL/palatal | 1 | Voiced_palatal_approximant |
extra | 16 | x | X | obstruent | 3 FRICATIVE/Non-sibilant fricative | 2/8 DORSAL/velar | 0 | Voiceless_velar_fricative |
extra | 17 | h | H | ? | 3?4 (FRICATIVE) | 4/12 LARYNGEAL/glottal | 0 | Voiceless_glottal_fricative |
extra | 18 | r | R | ? | 6 TRILL | 1/3 CORONAL/alveolar | 1 | Voiced_alveolar_trill |
extra | 19 | l | L | sonorant | 8 LATERAL-APPROX | 1/3 CORONAL/alveolar | 1 | Voiced_alveolar_lateral_approximant |
extra | 20 | w | W | sonorant | Approximant/(Co-articulated) | 2/8 DORSAL/velar | 1 | Voiced_labio-velar_approximant |
Numeral system
Grouping
Use grouping by 4 like in East Asia Myriad http://en.wikipedia.org/wiki/Chinese_numerals#Large_numbers
Also for the part after the hexadecimal separator http://en.wikipedia.org/wiki/MOS:NUM#Delimiting_.28grouping_of_digits.29 has grouping by 3 (physics) and by 5 (maths). Unify these.
Naming
For naming of larger numbers use something like
- 2^4 = 10^1 = tip
- 10^2 = pip
- 10^3 = bip
- 10^4 = tip
(10^4)^1 | NM^T^N | 1 0000 | (ni)tinum (n=1) | |
(10^4)^2 | NM^T^P | 1 0000 0000 | squared myriad | pitinum (p=2) |
(10^4)^3 | NM^T^B | 1 0000 0000 0000 | cubic myriad | bitinum (b=3) |
(10^4)^4 | NM^T^T | 1 0000 0000 0000 0000 | quartic myriad | titinum (t=4) |
Unit prefixes
- kilo-gram ~ niti-gram
- mega-gram ~ piti-gram
- niti-joule, piti-joule
- piti-byte
Finger counting
Place
Coordinates
Latitude
As degrees:
Ma | ISO 6709 | Comment |
---|---|---|
0.4 | 90° | North Pole |
0.3 | 67.5° | |
0.2 | 45° | |
0.1 | 22.5° | |
0 | 0 | equator |
-0.1 | -22.5° | |
-0.2 | -45° | |
-0.3 | -22.5° | |
-0.4 | -90° | South Pole |
Longitude
Longitudes run from 0 to 1 in westward direction.
Distance:
- 0x0.1 = 360°/16 = 22.5°
- 0x0.08 = 11.25°
- 0x0.2 = 45°
http://anna.info/x/Peters_projection_-_Umnak_meridian_-_hextime.svg
Positions:
Ma | ISO 6709 in ° | ISO 6709 | Comment |
---|---|---|---|
.0 | -168.75 | -168°45' | Umnak |
.1 | 168.75 | ||
.2 | 146.25 | Wilsons Promontory N.P., Tasmania | |
.3 | 123.75 | ||
.4 | 101.25 | ||
.5 | 78.75 | Issyk Kul (Kyrgyzstan), Meerut, East of New Delhi (India), West of Sri Lanka | |
.6 | 56.25 | ||
.7 | 33.75 | Krym, Lake Victoria | |
.8 | 11.25 | 11°15' | Florence |
.C | -78.75 | East of Panama Canal (Panama), West of Quito (Ecuador), Juan Fernandéz Islands (Chile) |
Compass direction
Hex | English | English acronym | Level |
---|---|---|---|
.0 | North | N | 1 |
.1 | North-northeast | NNE | 4 |
.2 | Northeast | NE | 3 |
.3 | East-northeast | ENE | 4 |
.4 | East | E | 2 |
.5 | East-southeast | ESE | 4 |
.6 | Southeast | SE | 3 |
.7 | South-southeast | SSE | 4 |
.8 | South | S | 1 |
.9 | South-southwest | SSW | 4 |
.A | Southwest | SW | 3 |
.B | West-southwest | WSW | 4 |
.C | West | W | 2 |
.D | West-northwest | WNW | 4 |
.E | Northwest | NW | 3 |
.F | North-northwest | NNW | 4 |
Time
Base unit: 1 earth day.
- 1 hexsec = 1 day / 2^16 = 24*60*60 sec / 2^16 = (86400/65536) sec = 1.318359375 sec
Clock
See also: Ma circle
Hex | hexsec (base 16 notation) |
hexsec (base 10 notation) |
Traditional | |||
---|---|---|---|---|---|---|
1 | = | 10000 | = | 65536 | = | 24 h |
0.1 (hex hour) | = | 1000 | = | 4096 | = | 1 h 30 min |
0.01 | = | 100 | = | 256 | = | 5 min 37.5 sec |
0.001 (hex minute) | = | 10 | = | 16 | ≈ | 21.09 sec |
0.0001 (hex second) | = | 1 | = | 1 | ≈ | 1.32 sec |
0.c23 | ≈ | 0.759 | ≈ | 1 sec |
Hex | ISO 8601 | Comment |
---|---|---|
.0100 | 00:05:37.5 | |
.0200 | 00:11:15 | |
.0400 | 00:22:30 | |
.0800 | 00:45:00 | |
.1000 | 01:30:00 | 1.5÷24 = 1÷16 = 0.1 |
.8000 | 12:00:00 | 12÷24 = 8÷16 = 0.8 |
.F000 | 22:30:00 | 22.5÷24 = 15÷16 = 0.F |
.F800 | 23:15:00 |
Epoch
Avoid negative year numbers for years since -53248 CE.
ISO (CE) | Ma (base 10) | Ma (base 16) | Note |
---|---|---|---|
-53248 | 0 | 0 | |
-49152 | 4096 | 1000 | Start of the 1xxx-years. First four digit year in hex notation. |
-13926 | 39322 | 999A | starting with that year all 4-character hex notations until FFFF will include a letter and distinguish the notation from other systems of year notation. |
-12288 | 40960 | A000 | Start of the Axxx-years. Starting with that year, all 4-character hex notations until FFFF will start with a letter and distinguish the notation even better from other systems of year notation. |
-9558 | 45056 | AAAA | |
-8192 | 45056 | B000 | Start of the Bxxx-years. |
-4096 | 49152 | C000 | Start of the Cxxx-years. |
0 | 53248 | D000 | Start of the Dxxx-years. Until 4095 CE all years start with the letter D. |
1792 | 55040 | D700 | |
2000 | 55248 | D7D0 | |
2048 | 55296 | D800 | |
4096 | 57344 | E000 | Start of the Exxx-years. |
10000 | 63248 | F710 | ISO calendar needs 5 digits. |
12287 | 65535 | FFFF | the last year that can be expressed with 4 digits in hex notation. |
The year starts on the day of the Northward equinox. The length of Northward equinox solar year is relatively stable in the time from 6000 BCE to 10000 CE at 47:37 to 49:20 in excess of 365 days and 5 hours. The other equinox and the solstice years are less stable.
That means, the year starts on what is mostly March 20 or 21 in ISO 8601.
Frequency
Derived unit: 1/d
- 1Hz = 86400/d = 1.318359375 /md [m = milli 1/65536]
- 0x1/md = 0.75851851851 Hz
- 0x200/md = 388.361481481 Hz
Pitch
ETS = Equal-tempered scale with A4=435.921023988 Hz, which is 0.99072959997 of ISO 16 defined A4=440 Hz.
A4@440 Hz : 440*(60*60*24) cycles per day = 38016000 cpd. That is 2^(25.1801034055) cpd, in hex notation 2^(0x19.2E1B41BC854E556FEB6CC2).
Ma | 2^(...) | Oscillation per day | Oscillation per hexsec (day/65536) | Hz | ETS | Midi approx |
---|---|---|---|---|---|---|
M0 | 0x0 | 2^0 = 0x1 | 2^(-16) = 0x0.0001 | 1/(60*60*24) = 0.00001157407 | G-21 | |
M1 | 0x1 | 2^1 = 0x2 | 2^(-15) = 0x0.0002 | 2^(-15)/(60*60*24) = | G-20 | |
M16 | 0x10 | 2^16 = 0x 1 0000 | 2^0 = 1 = 0x1 | (2^16)/(60*60*24) = 0.75851851851 | G-5 | |
D19 | 0x13.6AAAA | 2^19*2^(5/12) | 2^3*2^(5/12)=10.6787188334 | (2^19)/(60*60*24)*2^(5/12) = 8.10000598916 | C-1 | 0 |
M20 | 0x14 | 2^20 = 0x 10 0000 | 2^4 = 16 = 0x10 | (2^20)/(60*60*24) = 12.1362962963 | G-1 | 7 |
D20 | 0x14.6AAAA | 2^20*2^(5/12) | 2^4*2^(5/12)=21.3574376667 | (2^20)/(60*60*24)*2^(5/12) = 16.2000119783 | C0 | 12 |
M21 | 0x15 | 2^21 = 0x 20 0000 | 2^5 = 32 = 0x20 | (2^21)/(60*60*24) = 24.2725925926 | G0 | 19 |
M22 | 0x16 | 2^22 = 0x 40 0000 | 2^6 = 64 = 0x40 | (2^22)/(60*60*24) = 48.5451851852 | G1 | 31 |
M23 | 0x17 | 2^23 = 0x 80 0000 | 2^7 = 128 = 0x80 | (2^23)/(60*60*24) = 97.0903703704 | G2 | 43 |
M24 | 0x18 | 2^24 = 0x 100 0000 | 2^8 = 256 = 0x100 | (2^24)/(60*60*24) = 194.180740741 | G3 | 55 |
M25 | 0x19 | 2^25 = 0x 200 0000 | 2^9 = 512 = 0x200 | (2^25)/(60*60*24) = 388.361481481 | G4 | 67 |
N25 | 0x19.15555 | 2^25*2^(1/12) | 2^9*2^(1/12)=542.445104312 | (2^25)/(60*60*24)*2^(1/12) = 411.4546569 | Gis4/As4 | 68 |
P25 | 0x19.2AAAA | 2^25*2^(2/12) | 2^9*2^(2/12)=574.700568734 | (2^25)/(60*60*24)*2^(2/12) = 435.921023988 | A4 | 69 |
B25 | 0x19.4 | 2^25*2^(3/12)=2^(25.25) | 2^9*2^(3/12)=2^(9.25)=608.874042881 | (2^25)/(60*60*24)*2^(3/12) = 461.842236971 | Ais4/Bes | 70 |
T25 | 0x19.5555 | 2^25*2^(4/12)=2^(25.3333) | 2^9*2^(4/12)=645.079577546 | (2^25)/(60*60*24)*2^(4/12) = 489.304805487 | B4/Ces4 | 71 |
D25 | 0x19.6AAAA | 2^25*2^(5/12) | 2^9*2^(5/12)=683.438005335 | (2^25)/(60*60*24)*2^(5/12) = 518.400383306 | Bis4/C5 | 72 |
K25 | 0x19.8 | 2^25*2^(6/12)=2^(25.5) | 2^9*2^(6/12)=724.077343935 | (2^25)/(60*60*24)*2^(6/12) = 549.226074214 | Cis5/Des5 | 73 |
G25 | 2^25*2^(7/12) | D5 | 74 | |||
F25 | 2^25*2^(8/12)=2^(25.6666) | Dis/Es | 75 | |||
V25 | 0x19.C | 2^25*2^(9/12)=2^(25.75) | E5/Fes | 76 | ||
S25 | 2^25*2^(10/12) | Eis/F | 77 | |||
Z25 | 2^25*2^(11/12) | Fis/Ges | 78 | |||
M26 | 0x1A | 2^26 = 0x 400 0000 | 2^10 = 1024 = 0x400 | (2^26)/(60*60*24) = 776.722962963 | G5 | 79 |
M30 | 0x1E | 2^30 = 0x 4000 0000 | 2^14 = 16384 = 0x4000 | (2^30)/(60*60*24) = 12427.5674074 | G9 | 127 |
M31 | 0x1F | 2^31 = 0x 8000 0000 | 2^15 = 32768 = 0x8000 | (2^31)/(60*60*24) = 24855.1348148 | G10 | |
M32 | 0x20 | 2^32 = 0x1 0000 0000 | 2^16 = 65536 = 0x1 0000 | (2^32)/(60*60*24) = 49710.2696296 | G11 |
Length
Base unit: 1 earth equator.
m = milli as 1/65536, k as 65536
- 0x1 Q = 40 075 000 meter
- 0x1 mQ ~ 611 meter
- 0x0.1 mQ ~ 38.21849 meter
- 0x0.01 mQ ~ 2.3886 meter
- 0x0.001 mQ ~ 0.14929 meter
- 0x0.0001 mQ ~ 0.009330688 meter ~ 9.33 mm = 0.933 cm
- 1 AU = 149597870700/40075000 Q = 3732.94749095 Q ~ 0xE95 Q
- 0x10000 Q = 1 kQ = 2.6263552e+12 m = 17.5561 AU
- 1 light-year = 9460730472580800 meter = 9460730472580800/40075000 Q = 236075620.027 Q = 3602.22808879 kQ ~ 0xE12 kQ
- MQ = 0x10000 kQ = 1.7212081e+17 m = 18.193184436 ly
Speed
Equator moves with 1 Q/d, i.e. 611 meter/1.32 seconds ~ 463 m/s ~ 1670 km/h.
- .1 Q/d ~ 104 km/h
- .08 Q/d ~ 52 km/h
- .01 Q/d = 1 cQ/d ~ 6.52 km/h [c centi, as 1/256]
A precision 1 cQ/d should be sufficient for traffic signs, i.e. only two digits are needed.
Since 0.1 Q/d ~ 104 km/h, most signs will only need one digit. A speedometer in cars would count cQ/d [0.01 Q/d].
Light:
- 299792458*24*60*60/40075000 = 646339.822114 Q/d = 9.86236300832 kQ/d
Chemical elements
Element symbols are derived from the atomic number. The numbers run from 1 to 118, the latter currently is the highest number of known elements.
118 in hex is 0x76, i.e. two digits are sufficient.